Nuprl Lemma : posint_cancel

Cancel(|<ℤ+,*>|;|<ℤ+,*>|;*)


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  cancel: Cancel(T;S;op) posint_mul_mon: <ℤ+,*> grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop:
Lemmas referenced :  set_subtype_base less_than_wf istype-int int_subtype_base nat_plus_wf mul_cancel_in_eq nat_plus_inc_int_nzero nat_plus_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberFormation_alt introduction cut hypothesis equalityIsType4 inhabitedIsType hypothesisEquality baseApply closedConclusion baseClosed applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality_alt natural_numberEquality independent_isectElimination isect_memberEquality_alt axiomEquality because_Cache equalityTransitivity equalitySymmetry universeIsType setElimination rename applyLambdaEquality dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality voidElimination independent_pairFormation dependent_set_memberEquality_alt

Latex:
Cancel(|<\mBbbZ{}\msupplus{},*>|;|<\mBbbZ{}\msupplus{},*>|;*)



Date html generated: 2019_10_16-PM-01_06_00
Last ObjectModification: 2018_10_08-PM-00_36_48

Theory : factor_1


Home Index