Nuprl Lemma : posint_cancel
Cancel(|<ℤ+,*>|;|<ℤ+,*>|;*)
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>
, 
grp_op: *
, 
grp_car: |g|
, 
cancel: Cancel(T;S;op)
Definitions unfolded in proof : 
cancel: Cancel(T;S;op)
, 
posint_mul_mon: <ℤ+,*>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
set_subtype_base, 
less_than_wf, 
istype-int, 
int_subtype_base, 
nat_plus_wf, 
mul_cancel_in_eq, 
nat_plus_inc_int_nzero, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
equalityIsType4, 
inhabitedIsType, 
hypothesisEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
isect_memberEquality_alt, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
setElimination, 
rename, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt
Latex:
Cancel(|<\mBbbZ{}\msupplus{},*>|;|<\mBbbZ{}\msupplus{},*>|;*)
Date html generated:
2019_10_16-PM-01_06_00
Last ObjectModification:
2018_10_08-PM-00_36_48
Theory : factor_1
Home
Index