Nuprl Lemma : posint_mul_mon_wf

<ℤ+,*> ∈ AbMon


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> member: t ∈ T abmonoid: AbMon
Definitions unfolded in proof :  posint_mul_mon: <ℤ+,*> uall: [x:A]. B[x] member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: uimplies: supposing a assoc: Assoc(T;op) infix_ap: y all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top ident: Ident(T;op;id) cand: c∧ B guard: {T} comm: Comm(T;op)
Lemmas referenced :  int_formula_prop_less_lemma int_formula_prop_and_lemma intformless_wf intformand_wf decidable__lt int_term_value_constant_lemma itermConstant_wf mul_bounds_1b int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties less_than_wf mul_nat_plus le_int_wf eq_int_wf nat_plus_wf mk_abmonoid
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality setElimination rename hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction imageMemberEquality baseClosed independent_isectElimination isect_memberFormation dependent_functionElimination multiplyEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality because_Cache equalityTransitivity equalitySymmetry applyEquality setEquality productElimination independent_pairEquality

Latex:
<\mBbbZ{}\msupplus{},*>  \mmember{}  AbMon



Date html generated: 2016_05_16-AM-07_45_31
Last ObjectModification: 2016_01_16-PM-11_37_55

Theory : factor_1


Home Index