Nuprl Lemma : mfact_exists_a
∀g:IAbMonoid
  (Cancel(|g|;|g|;*)
  
⇒ WellFnd{i}(|g|;x,y.x p| y)
  
⇒ (∀c:|g|. Dec(Reducible(c)))
  
⇒ (∀c:|g|. Dec(g-unit(c)))
  
⇒ (∀b:|g|. ∃as:Atom{g} List. (b ~ (Π as))))
Proof
Definitions occuring in Statement : 
matom_ty: Atom{g}
, 
mreducible: Reducible(a)
, 
mpdivides: a p| b
, 
massoc: a ~ b
, 
munit: g-unit(u)
, 
mon_reduce: mon_reduce, 
list: T List
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
cancel: Cancel(T;S;op)
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
mon_reduce: mon_reduce, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
matom_ty: Atom{g}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
grp_car_wf, 
all_wf, 
decidable_wf, 
munit_wf, 
mreducible_wf, 
wellfounded_wf, 
mpdivides_wf, 
cancel_wf, 
grp_op_wf, 
iabmonoid_wf, 
nil_wf, 
matom_ty_wf, 
reduce_nil_lemma, 
massoc_wf, 
mon_reduce_wf, 
subtype_rel_list, 
munit_char, 
mfact_exists, 
massoc_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
independent_isectElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)
    {}\mRightarrow{}  WellFnd\{i\}(|g|;x,y.x  p|  y)
    {}\mRightarrow{}  (\mforall{}c:|g|.  Dec(Reducible(c)))
    {}\mRightarrow{}  (\mforall{}c:|g|.  Dec(g-unit(c)))
    {}\mRightarrow{}  (\mforall{}b:|g|.  \mexists{}as:Atom\{g\}  List.  (b  \msim{}  (\mPi{}  as))))
Date html generated:
2016_05_16-AM-07_44_56
Last ObjectModification:
2015_12_28-PM-05_54_06
Theory : factor_1
Home
Index