Nuprl Lemma : mfact_exists_a

g:IAbMonoid
  (Cancel(|g|;|g|;*)
   WellFnd{i}(|g|;x,y.x p| y)
   (∀c:|g|. Dec(Reducible(c)))
   (∀c:|g|. Dec(g-unit(c)))
   (∀b:|g|. ∃as:Atom{g} List. (b (Π as))))


Proof




Definitions occuring in Statement :  matom_ty: Atom{g} mreducible: Reducible(a) mpdivides: p| b massoc: b munit: g-unit(u) mon_reduce: mon_reduce list: List wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) all: x:A. B[x] exists: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] mon_reduce: mon_reduce top: Top subtype_rel: A ⊆B uimplies: supposing a matom_ty: Atom{g} iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  grp_car_wf all_wf decidable_wf munit_wf mreducible_wf wellfounded_wf mpdivides_wf cancel_wf grp_op_wf iabmonoid_wf nil_wf matom_ty_wf reduce_nil_lemma massoc_wf mon_reduce_wf subtype_rel_list munit_char mfact_exists massoc_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination unionElimination dependent_pairFormation isect_memberEquality voidElimination voidEquality applyEquality independent_isectElimination because_Cache productElimination independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)
    {}\mRightarrow{}  WellFnd\{i\}(|g|;x,y.x  p|  y)
    {}\mRightarrow{}  (\mforall{}c:|g|.  Dec(Reducible(c)))
    {}\mRightarrow{}  (\mforall{}c:|g|.  Dec(g-unit(c)))
    {}\mRightarrow{}  (\mforall{}b:|g|.  \mexists{}as:Atom\{g\}  List.  (b  \msim{}  (\mPi{}  as))))



Date html generated: 2016_05_16-AM-07_44_56
Last ObjectModification: 2015_12_28-PM-05_54_06

Theory : factor_1


Home Index