Nuprl Lemma : munit_char

g:IAbMonoid. ∀a:|g|.  (g-unit(a) ⇐⇒ e)


Proof




Definitions occuring in Statement :  massoc: b munit: g-unit(u) all: x:A. B[x] iff: ⇐⇒ Q iabmonoid: IAbMonoid grp_id: e grp_car: |g|
Definitions unfolded in proof :  munit: g-unit(u) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] rev_implies:  Q massoc: b symmetrize: Symmetrize(x,y.R[x; y];a;b)
Lemmas referenced :  mdivides_wf grp_id_wf massoc_wf grp_car_wf iabmonoid_wf mdivides_id
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination because_Cache productElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a:|g|.    (g-unit(a)  \mLeftarrow{}{}\mRightarrow{}  a  \msim{}  e)



Date html generated: 2019_10_16-PM-01_05_45
Last ObjectModification: 2018_08_22-AM-09_39_30

Theory : factor_1


Home Index