Nuprl Lemma : munit_char
∀g:IAbMonoid. ∀a:|g|.  (g-unit(a) 
⇐⇒ a ~ e)
Proof
Definitions occuring in Statement : 
massoc: a ~ b
, 
munit: g-unit(u)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
iabmonoid: IAbMonoid
, 
grp_id: e
, 
grp_car: |g|
Definitions unfolded in proof : 
munit: g-unit(u)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
massoc: a ~ b
, 
symmetrize: Symmetrize(x,y.R[x; y];a;b)
Lemmas referenced : 
mdivides_wf, 
grp_id_wf, 
massoc_wf, 
grp_car_wf, 
iabmonoid_wf, 
mdivides_id
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
because_Cache, 
productElimination
Latex:
\mforall{}g:IAbMonoid.  \mforall{}a:|g|.    (g-unit(a)  \mLeftarrow{}{}\mRightarrow{}  a  \msim{}  e)
Date html generated:
2019_10_16-PM-01_05_45
Last ObjectModification:
2018_08_22-AM-09_39_30
Theory : factor_1
Home
Index