Nuprl Lemma : mdivides_id
∀g:IAbMonoid. ∀a:|g|.  (e | a)
Proof
Definitions occuring in Statement : 
mdivides: b | a
, 
all: ∀x:A. B[x]
, 
iabmonoid: IAbMonoid
, 
grp_id: e
, 
grp_car: |g|
Definitions unfolded in proof : 
mdivides: b | a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
and: P ∧ Q
, 
prop: ℙ
, 
imon: IMonoid
, 
infix_ap: x f y
Lemmas referenced : 
mon_ident, 
equal_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
iabmonoid_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
dependent_pairFormation, 
hypothesisEquality, 
equalitySymmetry, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
applyEquality
Latex:
\mforall{}g:IAbMonoid.  \mforall{}a:|g|.    (e  |  a)
Date html generated:
2016_05_16-AM-07_42_56
Last ObjectModification:
2015_12_28-PM-05_54_55
Theory : factor_1
Home
Index