Nuprl Lemma : mdivides_id

g:IAbMonoid. ∀a:|g|.  (e a)


Proof




Definitions occuring in Statement :  mdivides: a all: x:A. B[x] iabmonoid: IAbMonoid grp_id: e grp_car: |g|
Definitions unfolded in proof :  mdivides: a all: x:A. B[x] exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid and: P ∧ Q prop: imon: IMonoid infix_ap: y
Lemmas referenced :  mon_ident equal_wf grp_car_wf grp_op_wf grp_id_wf iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation dependent_pairFormation hypothesisEquality equalitySymmetry cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis applyEquality

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a:|g|.    (e  |  a)



Date html generated: 2016_05_16-AM-07_42_56
Last ObjectModification: 2015_12_28-PM-05_54_55

Theory : factor_1


Home Index