Nuprl Lemma : massoc_weakening

g:IAbMonoid. ∀a,b:|g|.  ((a b ∈ |g|)  (a b))


Proof




Definitions occuring in Statement :  massoc: b all: x:A. B[x] implies:  Q equal: t ∈ T iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  equal_wf grp_car_wf iabmonoid_wf massoc_equiv_rel massoc_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination productElimination hyp_replacement equalitySymmetry applyLambdaEquality sqequalRule

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,b:|g|.    ((a  =  b)  {}\mRightarrow{}  (a  \msim{}  b))



Date html generated: 2017_01_09-AM-08_38_29
Last ObjectModification: 2016_07_12-PM-01_12_35

Theory : factor_1


Home Index