Nuprl Lemma : massoc_weakening
∀g:IAbMonoid. ∀a,b:|g|.  ((a = b ∈ |g|) 
⇒ (a ~ b))
Proof
Definitions occuring in Statement : 
massoc: a ~ b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
equal_wf, 
grp_car_wf, 
iabmonoid_wf, 
massoc_equiv_rel, 
massoc_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
productElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
sqequalRule
Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,b:|g|.    ((a  =  b)  {}\mRightarrow{}  (a  \msim{}  b))
Date html generated:
2017_01_09-AM-08_38_29
Last ObjectModification:
2016_07_12-PM-01_12_35
Theory : factor_1
Home
Index