Nuprl Lemma : massoc_equiv_rel
∀g:IAbMonoid. EquivRel(|g|;x,y.x ~ y)
Proof
Definitions occuring in Statement : 
massoc: a ~ b
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
massoc: a ~ b
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
Lemmas referenced : 
iabmonoid_wf, 
symmetrized_preorder, 
grp_car_wf, 
mdivides_wf, 
mdivides_preorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}g:IAbMonoid.  EquivRel(|g|;x,y.x  \msim{}  y)
Date html generated:
2016_05_16-AM-07_43_25
Last ObjectModification:
2015_12_28-PM-05_54_25
Theory : factor_1
Home
Index