Nuprl Lemma : massoc_equiv_rel

g:IAbMonoid. EquivRel(|g|;x,y.x y)


Proof




Definitions occuring in Statement :  massoc: b equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x] iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] massoc: b member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q
Lemmas referenced :  iabmonoid_wf symmetrized_preorder grp_car_wf mdivides_wf mdivides_preorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality lambdaEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  EquivRel(|g|;x,y.x  \msim{}  y)



Date html generated: 2016_05_16-AM-07_43_25
Last ObjectModification: 2015_12_28-PM-05_54_25

Theory : factor_1


Home Index