Nuprl Lemma : mdivides_preorder

g:IAbMonoid. Preorder(|g|;x,y.x y)


Proof




Definitions occuring in Statement :  mdivides: a preorder: Preorder(T;x,y.R[x; y]) all: x:A. B[x] iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  preorder: Preorder(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid implies:  Q prop:
Lemmas referenced :  grp_car_wf mdivides_wf iabmonoid_wf mdivides_refl mdivides_trans
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination because_Cache independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  Preorder(|g|;x,y.x  |  y)



Date html generated: 2016_05_16-AM-07_43_02
Last ObjectModification: 2015_12_28-PM-05_54_51

Theory : factor_1


Home Index