Nuprl Lemma : mdivides_preorder
∀g:IAbMonoid. Preorder(|g|;x,y.x | y)
Proof
Definitions occuring in Statement : 
mdivides: b | a
, 
preorder: Preorder(T;x,y.R[x; y])
, 
all: ∀x:A. B[x]
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
preorder: Preorder(T;x,y.R[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
grp_car_wf, 
mdivides_wf, 
iabmonoid_wf, 
mdivides_refl, 
mdivides_trans
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}g:IAbMonoid.  Preorder(|g|;x,y.x  |  y)
Date html generated:
2016_05_16-AM-07_43_02
Last ObjectModification:
2015_12_28-PM-05_54_51
Theory : factor_1
Home
Index