Nuprl Lemma : mdivides_trans

g:IAbMonoid. ∀a,b,c:|g|.  ((a b)  (b c)  (a c))


Proof




Definitions occuring in Statement :  mdivides: a all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] mdivides: a exists: x:A. B[x] infix_ap: y squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  mdivides_wf grp_car_wf iabmonoid_wf grp_op_wf equal_wf squash_wf true_wf iff_weakening_equal mon_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination productElimination dependent_pairFormation applyEquality because_Cache lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,b,c:|g|.    ((a  |  b)  {}\mRightarrow{}  (b  |  c)  {}\mRightarrow{}  (a  |  c))



Date html generated: 2017_10_01-AM-09_57_50
Last ObjectModification: 2017_03_03-PM-00_58_56

Theory : factor_1


Home Index