Nuprl Lemma : mdivides_refl

g:IAbMonoid. ∀a:|g|.  (a a)


Proof




Definitions occuring in Statement :  mdivides: a all: x:A. B[x] iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid mdivides: a exists: x:A. B[x] prop: infix_ap: y squash: T and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  grp_car_wf iabmonoid_wf grp_id_wf equal_wf grp_op_wf squash_wf true_wf mon_ident iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_pairFormation because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a:|g|.    (a  |  a)



Date html generated: 2017_10_01-AM-09_57_47
Last ObjectModification: 2017_03_03-PM-00_58_39

Theory : factor_1


Home Index