Nuprl Lemma : mfact_exists

g:IAbMonoid
  (Cancel(|g|;|g|;*)
   WellFnd{i}(|g|;x,y.x p| y)
   (∀c:|g|. Dec(Reducible(c)))
   (∀b:|g|. ((¬(g-unit(b)))  (∃as:Atom{g} List. (b (Π as) ∈ |g|)))))


Proof




Definitions occuring in Statement :  matom_ty: Atom{g} mreducible: Reducible(a) mpdivides: p| b munit: g-unit(u) mon_reduce: mon_reduce list: List wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] wellfounded: WellFnd{i}(A;x,y.R[x; y]) so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a matom_ty: Atom{g} so_apply: x[s] exists: x:A. B[x] guard: {T} decidable: Dec(P) or: P ∨ Q mreducible: Reducible(a) and: P ∧ Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q infix_ap: y mon_reduce: mon_reduce top: Top matomic: Atomic(a) cand: c∧ B
Lemmas referenced :  not_wf munit_wf grp_car_wf decidable_wf mreducible_wf wellfounded_wf mpdivides_wf cancel_wf grp_op_wf iabmonoid_wf exists_wf list_wf matom_ty_wf equal_wf mon_reduce_wf subtype_rel_list non_munit_diff_imp_mpdivides squash_wf true_wf istype-universe abmonoid_comm subtype_rel_self iff_weakening_equal append_wf mon_reduce_append cons_wf nil_wf reduce_cons_lemma istype-void reduce_nil_lemma matomic_wf mon_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination setElimination rename hypothesisEquality hypothesis sqequalRule functionIsType because_Cache lambdaEquality_alt inhabitedIsType functionEquality applyEquality independent_isectElimination independent_functionElimination productIsType equalityIsType1 unionElimination productElimination equalitySymmetry imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed instantiate dependent_pairFormation_alt isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt independent_pairFormation

Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)
    {}\mRightarrow{}  WellFnd\{i\}(|g|;x,y.x  p|  y)
    {}\mRightarrow{}  (\mforall{}c:|g|.  Dec(Reducible(c)))
    {}\mRightarrow{}  (\mforall{}b:|g|.  ((\mneg{}(g-unit(b)))  {}\mRightarrow{}  (\mexists{}as:Atom\{g\}  List.  (b  =  (\mPi{}  as))))))



Date html generated: 2019_10_16-PM-01_05_52
Last ObjectModification: 2018_10_08-PM-00_15_50

Theory : factor_1


Home Index