Nuprl Lemma : mfact_exists
∀g:IAbMonoid
  (Cancel(|g|;|g|;*)
  
⇒ WellFnd{i}(|g|;x,y.x p| y)
  
⇒ (∀c:|g|. Dec(Reducible(c)))
  
⇒ (∀b:|g|. ((¬(g-unit(b))) 
⇒ (∃as:Atom{g} List. (b = (Π as) ∈ |g|)))))
Proof
Definitions occuring in Statement : 
matom_ty: Atom{g}
, 
mreducible: Reducible(a)
, 
mpdivides: a p| b
, 
munit: g-unit(u)
, 
mon_reduce: mon_reduce, 
list: T List
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
cancel: Cancel(T;S;op)
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
matom_ty: Atom{g}
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
mreducible: Reducible(a)
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
, 
mon_reduce: mon_reduce, 
top: Top
, 
matomic: Atomic(a)
, 
cand: A c∧ B
Lemmas referenced : 
not_wf, 
munit_wf, 
grp_car_wf, 
decidable_wf, 
mreducible_wf, 
wellfounded_wf, 
mpdivides_wf, 
cancel_wf, 
grp_op_wf, 
iabmonoid_wf, 
exists_wf, 
list_wf, 
matom_ty_wf, 
equal_wf, 
mon_reduce_wf, 
subtype_rel_list, 
non_munit_diff_imp_mpdivides, 
squash_wf, 
true_wf, 
istype-universe, 
abmonoid_comm, 
subtype_rel_self, 
iff_weakening_equal, 
append_wf, 
mon_reduce_append, 
cons_wf, 
nil_wf, 
reduce_cons_lemma, 
istype-void, 
reduce_nil_lemma, 
matomic_wf, 
mon_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
functionIsType, 
because_Cache, 
lambdaEquality_alt, 
inhabitedIsType, 
functionEquality, 
applyEquality, 
independent_isectElimination, 
independent_functionElimination, 
productIsType, 
equalityIsType1, 
unionElimination, 
productElimination, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation
Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)
    {}\mRightarrow{}  WellFnd\{i\}(|g|;x,y.x  p|  y)
    {}\mRightarrow{}  (\mforall{}c:|g|.  Dec(Reducible(c)))
    {}\mRightarrow{}  (\mforall{}b:|g|.  ((\mneg{}(g-unit(b)))  {}\mRightarrow{}  (\mexists{}as:Atom\{g\}  List.  (b  =  (\mPi{}  as))))))
Date html generated:
2019_10_16-PM-01_05_52
Last ObjectModification:
2018_10_08-PM-00_15_50
Theory : factor_1
Home
Index