Nuprl Lemma : mon_reduce_append

g:IMonoid. ∀as,bs:|g| List.  ((Π as bs) ((Π as) (Π bs)) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_reduce: mon_reduce append: as bs list: List infix_ap: y all: x:A. B[x] equal: t ∈ T imon: IMonoid grp_op: * grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] imon: IMonoid nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] mon_reduce: mon_reduce squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) infix_ap: y
Lemmas referenced :  list_wf grp_car_wf imon_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases list_ind_nil_lemma reduce_nil_lemma equal_wf squash_wf true_wf istype-universe mon_reduce_wf mon_ident subtype_rel_self iff_weakening_equal product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le list_ind_cons_lemma reduce_cons_lemma grp_op_wf append_wf mon_assoc nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis inhabitedIsType hypothesisEquality universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation axiomEquality functionIsTypeImplies because_Cache unionElimination applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination imageMemberEquality baseClosed instantiate promote_hyp hypothesis_subsumption equalityIsType1 dependent_set_memberEquality_alt applyLambdaEquality equalityIsType4 baseApply closedConclusion intEquality

Latex:
\mforall{}g:IMonoid.  \mforall{}as,bs:|g|  List.    ((\mPi{}  as  @  bs)  =  ((\mPi{}  as)  *  (\mPi{}  bs)))



Date html generated: 2019_10_16-PM-01_02_13
Last ObjectModification: 2018_10_08-AM-11_48_46

Theory : list_2


Home Index