Nuprl Lemma : mon_reduce_append
∀g:IMonoid. ∀as,bs:|g| List.  ((Π as @ bs) = ((Π as) * (Π bs)) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_reduce: mon_reduce, 
append: as @ bs
, 
list: T List
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
imon: IMonoid
, 
grp_op: *
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
imon: IMonoid
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
mon_reduce: mon_reduce, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
infix_ap: x f y
Lemmas referenced : 
list_wf, 
grp_car_wf, 
imon_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list-cases, 
list_ind_nil_lemma, 
reduce_nil_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
mon_reduce_wf, 
mon_ident, 
subtype_rel_self, 
iff_weakening_equal, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
list_ind_cons_lemma, 
reduce_cons_lemma, 
grp_op_wf, 
append_wf, 
mon_assoc, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
axiomEquality, 
functionIsTypeImplies, 
because_Cache, 
unionElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
promote_hyp, 
hypothesis_subsumption, 
equalityIsType1, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
equalityIsType4, 
baseApply, 
closedConclusion, 
intEquality
Latex:
\mforall{}g:IMonoid.  \mforall{}as,bs:|g|  List.    ((\mPi{}  as  @  bs)  =  ((\mPi{}  as)  *  (\mPi{}  bs)))
Date html generated:
2019_10_16-PM-01_02_13
Last ObjectModification:
2018_10_08-AM-11_48_46
Theory : list_2
Home
Index