Nuprl Lemma : non_munit_diff_imp_mpdivides

g:IAbMonoid. (Cancel(|g|;|g|;*)  (∀a,b,c:|g|.  ((¬(g-unit(b)))  ((a b) c ∈ |g|)  (a p| c))))


Proof




Definitions occuring in Statement :  mpdivides: p| b munit: g-unit(u) infix_ap: y all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid infix_ap: y mpdivides: p| b and: P ∧ Q mdivides: a exists: x:A. B[x] not: ¬A false: False munit: g-unit(u) cancel: Cancel(T;S;op) uimplies: supposing a squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf grp_car_wf grp_op_wf not_wf munit_wf cancel_wf iabmonoid_wf mdivides_wf grp_id_wf squash_wf true_wf mon_ident infix_ap_wf iff_weakening_equal mon_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality because_Cache dependent_functionElimination independent_pairFormation dependent_pairFormation equalitySymmetry independent_functionElimination voidElimination productElimination independent_isectElimination lambdaEquality imageElimination equalityTransitivity universeEquality equalityUniverse levelHypothesis natural_numberEquality sqequalRule imageMemberEquality baseClosed

Latex:
\mforall{}g:IAbMonoid.  (Cancel(|g|;|g|;*)  {}\mRightarrow{}  (\mforall{}a,b,c:|g|.    ((\mneg{}(g-unit(b)))  {}\mRightarrow{}  ((a  *  b)  =  c)  {}\mRightarrow{}  (a  p|  c))))



Date html generated: 2017_10_01-AM-09_57_57
Last ObjectModification: 2017_03_03-PM-00_59_08

Theory : factor_1


Home Index