Nuprl Lemma : posint_reduc_dec

a:|<ℤ+,*>|. Dec(Reducible(a))


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> mreducible: Reducible(a) decidable: Dec(P) all: x:A. B[x] grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] implies:  Q iff: ⇐⇒ Q rev_implies:  Q mpdivides: p| b mdivides: a posint_mul_mon: <ℤ+,*> grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y exists: x:A. B[x] nat_plus: + not: ¬A int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top uiff: uiff(P;Q) le: A ≤ B less_than': less_than'(a;b) true: True cand: c∧ B
Lemmas referenced :  decidable_functionality mreducible_wf posint_mul_mon_wf mon_subtype_grp_sig abmonoid_subtype_mon subtype_rel_transitivity abmonoid_wf mon_wf grp_sig_wf exists_wf grp_car_wf not_wf munit_wf mpdivides_wf mreducible_elim abmonoid_subtype_iabmonoid posint_cancel nat_plus_wf equal_wf mul_nat_plus equal-wf-T-base divides_wf posint_munit_elim istype-int set_subtype_base less_than_wf int_subtype_base divides_nchar pdivisor_bound nat_plus_subtype_nat nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf equal-wf-base decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel int_seg_properties lelt_wf int_seg_wf decidable__exists_int_seg decidable__divides_ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesis applyEquality instantiate independent_isectElimination sqequalRule hypothesisEquality because_Cache lambdaEquality_alt productEquality inhabitedIsType independent_functionElimination productElimination universeIsType setElimination rename independent_pairFormation dependent_pairFormation_alt equalityIsType4 baseApply closedConclusion baseClosed intEquality natural_numberEquality promote_hyp productIsType equalityIsType3 multiplyEquality dependent_set_memberEquality_alt unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}a:|<\mBbbZ{}\msupplus{},*>|.  Dec(Reducible(a))



Date html generated: 2019_10_16-PM-01_06_08
Last ObjectModification: 2018_10_08-PM-00_18_42

Theory : factor_1


Home Index