Nuprl Lemma : posint_reduc_dec
∀a:|<ℤ+,*>|. Dec(Reducible(a))
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>
, 
mreducible: Reducible(a)
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
mpdivides: a p| b
, 
mdivides: b | a
, 
posint_mul_mon: <ℤ+,*>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
not: ¬A
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
cand: A c∧ B
Lemmas referenced : 
decidable_functionality, 
mreducible_wf, 
posint_mul_mon_wf, 
mon_subtype_grp_sig, 
abmonoid_subtype_mon, 
subtype_rel_transitivity, 
abmonoid_wf, 
mon_wf, 
grp_sig_wf, 
exists_wf, 
grp_car_wf, 
not_wf, 
munit_wf, 
mpdivides_wf, 
mreducible_elim, 
abmonoid_subtype_iabmonoid, 
posint_cancel, 
nat_plus_wf, 
equal_wf, 
mul_nat_plus, 
equal-wf-T-base, 
divides_wf, 
posint_munit_elim, 
istype-int, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
divides_nchar, 
pdivisor_bound, 
nat_plus_subtype_nat, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
equal-wf-base, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
int_seg_properties, 
lelt_wf, 
int_seg_wf, 
decidable__exists_int_seg, 
decidable__divides_ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
hypothesisEquality, 
because_Cache, 
lambdaEquality_alt, 
productEquality, 
inhabitedIsType, 
independent_functionElimination, 
productElimination, 
universeIsType, 
setElimination, 
rename, 
independent_pairFormation, 
dependent_pairFormation_alt, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
natural_numberEquality, 
promote_hyp, 
productIsType, 
equalityIsType3, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}a:|<\mBbbZ{}\msupplus{},*>|.  Dec(Reducible(a))
Date html generated:
2019_10_16-PM-01_06_08
Last ObjectModification:
2018_10_08-PM-00_18_42
Theory : factor_1
Home
Index