Nuprl Lemma : posint_munit_elim
∀a:|<ℤ+,*>|. (<ℤ+,*>-unit(a) 
⇐⇒ a = 1 ∈ ℤ)
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>
, 
munit: g-unit(u)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
grp_car: |g|
Definitions unfolded in proof : 
munit: g-unit(u)
, 
mdivides: b | a
, 
posint_mul_mon: <ℤ+,*>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_id: e
, 
pi2: snd(t)
, 
grp_op: *
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
mul_nat_plus, 
equal-wf-base-T, 
exists_wf, 
less_than_wf, 
divides_nchar, 
iff_wf, 
divides_wf, 
le_wf, 
false_wf, 
nat_plus_subtype_nat, 
assoced_nelim, 
unit_chars, 
equal_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
independent_pairFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
because_Cache, 
addLevel, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
applyEquality, 
dependent_set_memberEquality, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
introduction, 
imageMemberEquality, 
baseClosed, 
lambdaEquality
Latex:
\mforall{}a:|<\mBbbZ{}\msupplus{},*>|.  (<\mBbbZ{}\msupplus{},*>-unit(a)  \mLeftarrow{}{}\mRightarrow{}  a  =  1)
Date html generated:
2016_05_16-AM-07_45_36
Last ObjectModification:
2016_01_16-PM-11_37_49
Theory : factor_1
Home
Index