Nuprl Lemma : posint_munit_elim

a:|<ℤ+,*>|. (<ℤ+,*>-unit(a) ⇐⇒ 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> munit: g-unit(u) all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n int: equal: t ∈ T grp_car: |g|
Definitions unfolded in proof :  munit: g-unit(u) mdivides: a posint_mul_mon: <ℤ+,*> grp_car: |g| pi1: fst(t) grp_id: e pi2: snd(t) grp_op: * infix_ap: y all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: uall: [x:A]. B[x] nat_plus: + rev_implies:  Q subtype_rel: A ⊆B nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  mul_nat_plus equal-wf-base-T exists_wf less_than_wf divides_nchar iff_wf divides_wf le_wf false_wf nat_plus_subtype_nat assoced_nelim unit_chars equal_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid hypothesis independent_pairFormation sqequalHypSubstitution isectElimination thin intEquality setElimination rename hypothesisEquality natural_numberEquality because_Cache addLevel productElimination independent_functionElimination dependent_functionElimination applyEquality dependent_set_memberEquality impliesFunctionality equalityTransitivity equalitySymmetry introduction imageMemberEquality baseClosed lambdaEquality

Latex:
\mforall{}a:|<\mBbbZ{}\msupplus{},*>|.  (<\mBbbZ{}\msupplus{},*>-unit(a)  \mLeftarrow{}{}\mRightarrow{}  a  =  1)



Date html generated: 2016_05_16-AM-07_45_36
Last ObjectModification: 2016_01_16-PM-11_37_49

Theory : factor_1


Home Index