Nuprl Lemma : posint_munit_elim
∀a:|<ℤ+,*>|. (<ℤ+,*>-unit(a) ⇐⇒ a = 1 ∈ ℤ)
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>, 
munit: g-unit(u), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T, 
grp_car: |g|
Definitions unfolded in proof : 
munit: g-unit(u), 
mdivides: b | a, 
posint_mul_mon: <ℤ+,*>, 
grp_car: |g|, 
pi1: fst(t), 
grp_id: e, 
pi2: snd(t), 
grp_op: *, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x]
Lemmas referenced : 
mul_nat_plus, 
equal-wf-base-T, 
exists_wf, 
less_than_wf, 
divides_nchar, 
iff_wf, 
divides_wf, 
le_wf, 
false_wf, 
nat_plus_subtype_nat, 
assoced_nelim, 
unit_chars, 
equal_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
independent_pairFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
because_Cache, 
addLevel, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
applyEquality, 
dependent_set_memberEquality, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
introduction, 
imageMemberEquality, 
baseClosed, 
lambdaEquality
Latex:
\mforall{}a:|<\mBbbZ{}\msupplus{},*>|.  (<\mBbbZ{}\msupplus{},*>-unit(a)  \mLeftarrow{}{}\mRightarrow{}  a  =  1)
Date html generated:
2016_05_16-AM-07_45_36
Last ObjectModification:
2016_01_16-PM-11_37_49
Theory : factor_1
Home
Index