Nuprl Lemma : divides_nchar
∀a,b:ℕ+.  (a | b 
⇐⇒ ∃c:ℕ+. (b = (a * c) ∈ ℕ+))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
multiply: n * m
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
divides: b | a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
gt: i > j
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
guard: {T}
Lemmas referenced : 
decidable__equal_int, 
less_than_irreflexivity, 
le_weakening2, 
less_than_transitivity2, 
less_than_wf, 
pos_mul_arg_bounds, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
mul_nat_plus, 
nat_plus_wf, 
equal_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
multiplyEquality, 
hypothesis, 
because_Cache, 
productElimination, 
dependent_pairFormation, 
dependent_functionElimination, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_isectElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
dependent_set_memberEquality, 
applyEquality
Latex:
\mforall{}a,b:\mBbbN{}\msupplus{}.    (a  |  b  \mLeftarrow{}{}\mRightarrow{}  \mexists{}c:\mBbbN{}\msupplus{}.  (b  =  (a  *  c)))
Date html generated:
2016_05_14-PM-04_17_43
Last ObjectModification:
2016_01_14-PM-11_41_35
Theory : num_thy_1
Home
Index