Nuprl Lemma : divides_nchar

a,b:ℕ+.  (a ⇐⇒ ∃c:ℕ+(b (a c) ∈ ℕ+))


Proof




Definitions occuring in Statement :  divides: a nat_plus: + all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q multiply: m equal: t ∈ T
Definitions unfolded in proof :  divides: a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] rev_implies:  Q exists: x:A. B[x] gt: i > j decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top guard: {T}
Lemmas referenced :  decidable__equal_int less_than_irreflexivity le_weakening2 less_than_transitivity2 less_than_wf pos_mul_arg_bounds int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties mul_nat_plus nat_plus_wf equal_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality setElimination rename hypothesisEquality multiplyEquality hypothesis because_Cache productElimination dependent_pairFormation dependent_functionElimination natural_numberEquality equalityTransitivity equalitySymmetry unionElimination independent_isectElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination dependent_set_memberEquality applyEquality

Latex:
\mforall{}a,b:\mBbbN{}\msupplus{}.    (a  |  b  \mLeftarrow{}{}\mRightarrow{}  \mexists{}c:\mBbbN{}\msupplus{}.  (b  =  (a  *  c)))



Date html generated: 2016_05_14-PM-04_17_43
Last ObjectModification: 2016_01_14-PM-11_41_35

Theory : num_thy_1


Home Index