Nuprl Lemma : pdivisor_bound
∀a:ℕ. ∀b:ℕ+.  ((a | b) ∧ (¬(b | a)) 
⇐⇒ a < b ∧ (a | b))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
assoced: a ~ b
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
divides_wf, 
not_wf, 
less_than_wf, 
nat_plus_wf, 
nat_wf, 
divisor_bound, 
decidable__equal_int, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
squash_wf, 
true_wf, 
assoced_nelim, 
nat_plus_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :productIsType, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
Error :inhabitedIsType, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}a:\mBbbN{}.  \mforall{}b:\mBbbN{}\msupplus{}.    ((a  |  b)  \mwedge{}  (\mneg{}(b  |  a))  \mLeftarrow{}{}\mRightarrow{}  a  <  b  \mwedge{}  (a  |  b))
Date html generated:
2019_06_20-PM-02_21_18
Last ObjectModification:
2018_10_03-AM-00_12_05
Theory : num_thy_1
Home
Index