Nuprl Lemma : pdivisor_bound

a:ℕ. ∀b:ℕ+.  ((a b) ∧ (b a)) ⇐⇒ a < b ∧ (a b))


Proof




Definitions occuring in Statement :  divides: a nat_plus: + nat: less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + prop: rev_implies:  Q not: ¬A false: False uimplies: supposing a decidable: Dec(P) or: P ∨ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top squash: T true: True assoced: b subtype_rel: A ⊆B
Lemmas referenced :  divides_wf not_wf less_than_wf nat_plus_wf nat_wf divisor_bound decidable__equal_int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_le_lemma int_formula_prop_wf squash_wf true_wf assoced_nelim nat_plus_subtype_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule Error :productIsType,  Error :universeIsType,  introduction extract_by_obid isectElimination setElimination rename hypothesisEquality because_Cache independent_functionElimination voidElimination independent_isectElimination dependent_functionElimination unionElimination natural_numberEquality approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  hyp_replacement equalitySymmetry applyEquality imageElimination equalityTransitivity Error :inhabitedIsType,  imageMemberEquality baseClosed

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}b:\mBbbN{}\msupplus{}.    ((a  |  b)  \mwedge{}  (\mneg{}(b  |  a))  \mLeftarrow{}{}\mRightarrow{}  a  <  b  \mwedge{}  (a  |  b))



Date html generated: 2019_06_20-PM-02_21_18
Last ObjectModification: 2018_10_03-AM-00_12_05

Theory : num_thy_1


Home Index