Nuprl Lemma : posint_well_fnd

WellFnd{i}(|<ℤ+,*>|;x,y.x p| y)


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> mpdivides: p| b wellfounded: WellFnd{i}(A;x,y.R[x; y]) grp_car: |g|
Definitions unfolded in proof :  mpdivides: p| b mdivides: a posint_mul_mon: <ℤ+,*> grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] so_apply: x[s1;s2] nat_plus: + uimplies: supposing a implies:  Q all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q guard: {T} subtype_rel: A ⊆B wellfounded: WellFnd{i}(A;x,y.R[x; y]) int_seg: {i..j-} lelt: i ≤ j < k not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) nat: uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True ge: i ≥ 
Lemmas referenced :  wellfounded_functionality_wrt_iff nat_plus_wf exists_wf equal_wf mul_nat_plus not_wf divides_wf divides_nchar not_functionality_wrt_iff pdivisor_bound nat_plus_subtype_nat wellfounded_functionality_wrt_implies less_than_wf all_wf int_seg_properties nat_plus_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt subtype_rel_self le_wf false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel set_wf primrec-wf2 nat_wf nat_properties itermAdd_wf int_term_value_add_lemma subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache lambdaEquality productEquality hypothesisEquality setElimination rename independent_isectElimination independent_functionElimination lambdaFormation independent_pairFormation productElimination dependent_functionElimination promote_hyp applyEquality equalityTransitivity equalitySymmetry isect_memberFormation functionEquality cumulativity universeEquality natural_numberEquality approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality unionElimination instantiate applyLambdaEquality dependent_set_memberEquality hypothesis_subsumption addEquality minusEquality

Latex:
WellFnd\{i\}(|<\mBbbZ{}\msupplus{},*>|;x,y.x  p|  y)



Date html generated: 2019_10_16-PM-01_06_05
Last ObjectModification: 2018_09_17-PM-06_16_15

Theory : factor_1


Home Index