Nuprl Lemma : posint_well_fnd
WellFnd{i}(|<ℤ+,*>|;x,y.x p| y)
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>
, 
mpdivides: a p| b
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
grp_car: |g|
Definitions unfolded in proof : 
mpdivides: a p| b
, 
mdivides: b | a
, 
posint_mul_mon: <ℤ+,*>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s1;s2]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
ge: i ≥ j 
Lemmas referenced : 
wellfounded_functionality_wrt_iff, 
nat_plus_wf, 
exists_wf, 
equal_wf, 
mul_nat_plus, 
not_wf, 
divides_wf, 
divides_nchar, 
not_functionality_wrt_iff, 
pdivisor_bound, 
nat_plus_subtype_nat, 
wellfounded_functionality_wrt_implies, 
less_than_wf, 
all_wf, 
int_seg_properties, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
subtype_rel_self, 
le_wf, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
set_wf, 
primrec-wf2, 
nat_wf, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
promote_hyp, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
functionEquality, 
cumulativity, 
universeEquality, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
instantiate, 
applyLambdaEquality, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
addEquality, 
minusEquality
Latex:
WellFnd\{i\}(|<\mBbbZ{}\msupplus{},*>|;x,y.x  p|  y)
Date html generated:
2019_10_16-PM-01_06_05
Last ObjectModification:
2018_09_17-PM-06_16_15
Theory : factor_1
Home
Index