Nuprl Lemma : wellfounded_functionality_wrt_iff
∀[T1,T2:Type]. ∀[r1:T1 ⟶ T1 ⟶ ℙ]. ∀[r2:T2 ⟶ T2 ⟶ ℙ].
  (∀x,y:T1.  (r1[x;y] 
⇐⇒ r2[x;y])) 
⇒ (WellFnd{i}(T1;x,y.r1[x;y]) 
⇐⇒ WellFnd{i}(T2;x,y.r2[x;y])) 
  supposing T1 = T2 ∈ Type
Proof
Definitions occuring in Statement : 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
wellfounded_functionality_wrt_implies, 
all_wf, 
iff_wf, 
equal_wf
Rules used in proof : 
functionEquality, 
universeEquality, 
instantiate, 
hyp_replacement, 
applyEquality, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
lambdaFormation, 
rename, 
thin, 
hypothesis, 
axiomEquality, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
independent_functionElimination, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
equalitySymmetry
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[r1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[r2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x,y:T1.    (r1[x;y]  \mLeftarrow{}{}\mRightarrow{}  r2[x;y]))  {}\mRightarrow{}  (WellFnd\{i\}(T1;x,y.r1[x;y])  \mLeftarrow{}{}\mRightarrow{}  WellFnd\{i\}(T2;x,y.r2[x;y])) 
    supposing  T1  =  T2
Date html generated:
2019_06_20-AM-11_19_21
Last ObjectModification:
2018_10_15-PM-09_53_37
Theory : well_fnd
Home
Index