Nuprl Lemma : wellfounded_functionality_wrt_iff

[T1,T2:Type]. ∀[r1:T1 ⟶ T1 ⟶ ℙ]. ∀[r2:T2 ⟶ T2 ⟶ ℙ].
  (∀x,y:T1.  (r1[x;y] ⇐⇒ r2[x;y]))  (WellFnd{i}(T1;x,y.r1[x;y]) ⇐⇒ WellFnd{i}(T2;x,y.r2[x;y])) 
  supposing T1 T2 ∈ Type


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2x.t[x] prop: implies:  Q member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q iff: ⇐⇒ Q guard: {T} so_lambda: λ2y.t[x; y] rev_implies:  Q all: x:A. B[x]
Lemmas referenced :  wellfounded_functionality_wrt_implies all_wf iff_wf equal_wf
Rules used in proof :  functionEquality universeEquality instantiate hyp_replacement applyEquality because_Cache lambdaEquality sqequalRule hypothesisEquality cumulativity isectElimination sqequalHypSubstitution lemma_by_obid lambdaFormation rename thin hypothesis axiomEquality introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation independent_functionElimination independent_isectElimination productElimination dependent_functionElimination equalitySymmetry

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[r1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[r2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x,y:T1.    (r1[x;y]  \mLeftarrow{}{}\mRightarrow{}  r2[x;y]))  {}\mRightarrow{}  (WellFnd\{i\}(T1;x,y.r1[x;y])  \mLeftarrow{}{}\mRightarrow{}  WellFnd\{i\}(T2;x,y.r2[x;y])) 
    supposing  T1  =  T2



Date html generated: 2019_06_20-AM-11_19_21
Last ObjectModification: 2018_10_15-PM-09_53_37

Theory : well_fnd


Home Index