Nuprl Lemma : wellfounded_functionality_wrt_implies

[T1,T2:Type]. ∀[r1:T1 ⟶ T1 ⟶ ℙ]. ∀[r2:T2 ⟶ T2 ⟶ ℙ].
  (∀x,y:T1.  {r1[x;y]  r2[x;y]})  {WellFnd{i}(T1;x,y.r1[x;y])  WellFnd{i}(T2;x,y.r2[x;y])} 
  supposing T1 T2 ∈ Type


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] rev_implies:  Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T} uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] squash: T true: True all: x:A. B[x] subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  all_wf uall_wf rev_implies_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction axiomEquality hypothesis thin rename lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality lambdaEquality functionEquality applyEquality functionExtensionality universeEquality instantiate because_Cache hyp_replacement equalitySymmetry Error :applyLambdaEquality,  imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[r1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[r2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x,y:T1.    \{r1[x;y]  \mLeftarrow{}{}  r2[x;y]\})  {}\mRightarrow{}  \{WellFnd\{i\}(T1;x,y.r1[x;y])  {}\mRightarrow{}  WellFnd\{i\}(T2;x,y.r2[x;y])\} 
    supposing  T1  =  T2



Date html generated: 2016_10_21-AM-09_35_54
Last ObjectModification: 2016_07_12-AM-05_00_01

Theory : well_fnd


Home Index