Nuprl Lemma : posint_unit_dec

a:|<ℤ+,*>|. Dec(<ℤ+,*>-unit(a))


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> munit: g-unit(u) decidable: Dec(P) all: x:A. B[x] grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B abmonoid: AbMon mon: Mon posint_mul_mon: <ℤ+,*> grp_car: |g| pi1: fst(t) nat_plus: + implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  decidable_functionality munit_wf posint_mul_mon_wf abmonoid_wf equal_wf grp_car_wf posint_munit_elim decidable__int_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesis applyEquality lambdaEquality setElimination rename hypothesisEquality sqequalRule intEquality because_Cache natural_numberEquality independent_functionElimination productElimination

Latex:
\mforall{}a:|<\mBbbZ{}\msupplus{},*>|.  Dec(<\mBbbZ{}\msupplus{},*>-unit(a))



Date html generated: 2016_05_16-AM-07_45_47
Last ObjectModification: 2015_12_28-PM-05_53_29

Theory : factor_1


Home Index