Nuprl Lemma : bsuplist_wf

s:DSet. ∀as,bs:|s| List.  (bsuplist(s;as;bs) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bsuplist: bsuplist(s;as;bs) list: List bool: 𝔹 all: x:A. B[x] member: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T bsuplist: bsuplist(s;as;bs) uall: [x:A]. B[x] dset: DSet
Lemmas referenced :  bsublist_wf list_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis inhabitedIsType universeIsType isectElimination setElimination rename

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (bsuplist(s;as;bs)  \mmember{}  \mBbbB{})



Date html generated: 2019_10_16-PM-01_05_00
Last ObjectModification: 2018_10_08-AM-10_32_03

Theory : list_2


Home Index