Nuprl Lemma : bsuplist_wf
∀s:DSet. ∀as,bs:|s| List. (bsuplist(s;as;bs) ∈ 𝔹)
Proof
Definitions occuring in Statement :
bsuplist: bsuplist(s;as;bs)
,
list: T List
,
bool: 𝔹
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
bsuplist: bsuplist(s;as;bs)
,
uall: ∀[x:A]. B[x]
,
dset: DSet
Lemmas referenced :
bsublist_wf,
list_wf,
set_car_wf,
dset_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
sqequalRule,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
inhabitedIsType,
universeIsType,
isectElimination,
setElimination,
rename
Latex:
\mforall{}s:DSet. \mforall{}as,bs:|s| List. (bsuplist(s;as;bs) \mmember{} \mBbbB{})
Date html generated:
2019_10_16-PM-01_05_00
Last ObjectModification:
2018_10_08-AM-10_32_03
Theory : list_2
Home
Index