Nuprl Lemma : comb_for_ball_wf

λA,as,f,z. ∀bx(:A) ∈ as. f[x] ∈ A:Type ⟶ as:(A List) ⟶ f:(A ⟶ 𝔹) ⟶ (↓True) ⟶ 𝔹


Proof




Definitions occuring in Statement :  ball: ball list: List bool: 𝔹 so_apply: x[s] squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop:
Lemmas referenced :  ball_wf squash_wf true_wf istype-universe bool_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination functionIsType universeEquality

Latex:
\mlambda{}A,as,f,z.  \mforall{}\msubb{}x(:A)  \mmember{}  as.  f[x]  \mmember{}  A:Type  {}\mrightarrow{}  as:(A  List)  {}\mrightarrow{}  f:(A  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}



Date html generated: 2019_10_16-PM-01_02_51
Last ObjectModification: 2018_10_08-AM-11_23_28

Theory : list_2


Home Index