Nuprl Lemma : comb_for_count_wf

λs,a,bs,z. (a #∈ bs) ∈ s:DSet ⟶ a:|s| ⟶ bs:(|s| List) ⟶ (↓True) ⟶ ℤ


Proof




Definitions occuring in Statement :  count: #∈ as list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int: dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] prop: dset: DSet
Lemmas referenced :  count_wf squash_wf true_wf list_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination setElimination rename

Latex:
\mlambda{}s,a,bs,z.  (a  \#\mmember{}  bs)  \mmember{}  s:DSet  {}\mrightarrow{}  a:|s|  {}\mrightarrow{}  bs:(|s|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbZ{}



Date html generated: 2016_05_16-AM-07_39_30
Last ObjectModification: 2015_12_28-PM-05_43_26

Theory : list_2


Home Index