Nuprl Lemma : comb_for_count_wf
λs,a,bs,z. (a #∈ bs) ∈ s:DSet ⟶ a:|s| ⟶ bs:(|s| List) ⟶ (↓True) ⟶ ℤ
Proof
Definitions occuring in Statement : 
count: a #∈ as
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
Lemmas referenced : 
count_wf, 
squash_wf, 
true_wf, 
list_wf, 
set_car_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
setElimination, 
rename
Latex:
\mlambda{}s,a,bs,z.  (a  \#\mmember{}  bs)  \mmember{}  s:DSet  {}\mrightarrow{}  a:|s|  {}\mrightarrow{}  bs:(|s|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbZ{}
Date html generated:
2016_05_16-AM-07_39_30
Last ObjectModification:
2015_12_28-PM-05_43_26
Theory : list_2
Home
Index