Nuprl Lemma : comb_for_remove1_wf

λs,a,bs,z. (bs a) ∈ s:DSet ⟶ a:|s| ⟶ bs:(|s| List) ⟶ (↓True) ⟶ (|s| List)


Proof




Definitions occuring in Statement :  remove1: as a list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: dset: DSet
Lemmas referenced :  remove1_wf squash_wf true_wf list_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination setElimination rename

Latex:
\mlambda{}s,a,bs,z.  (bs  \mbackslash{}  a)  \mmember{}  s:DSet  {}\mrightarrow{}  a:|s|  {}\mrightarrow{}  bs:(|s|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (|s|  List)



Date html generated: 2019_10_16-PM-01_03_43
Last ObjectModification: 2018_10_08-AM-11_12_25

Theory : list_2


Home Index