Nuprl Lemma : comb_for_remove1_wf
λs,a,bs,z. (bs \ a) ∈ s:DSet ⟶ a:|s| ⟶ bs:(|s| List) ⟶ (↓True) ⟶ (|s| List)
Proof
Definitions occuring in Statement : 
remove1: as \ a
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
Lemmas referenced : 
remove1_wf, 
squash_wf, 
true_wf, 
list_wf, 
set_car_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
setElimination, 
rename
Latex:
\mlambda{}s,a,bs,z.  (bs  \mbackslash{}  a)  \mmember{}  s:DSet  {}\mrightarrow{}  a:|s|  {}\mrightarrow{}  bs:(|s|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (|s|  List)
Date html generated:
2019_10_16-PM-01_03_43
Last ObjectModification:
2018_10_08-AM-11_12_25
Theory : list_2
Home
Index