Nuprl Lemma : comb_for_remove1_wf
λs,a,bs,z. (bs \ a) ∈ s:DSet ⟶ a:|s| ⟶ bs:(|s| List) ⟶ (↓True) ⟶ (|s| List)
Proof
Definitions occuring in Statement :
remove1: as \ a
,
list: T List
,
squash: ↓T
,
true: True
,
member: t ∈ T
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
member: t ∈ T
,
squash: ↓T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
dset: DSet
Lemmas referenced :
remove1_wf,
squash_wf,
true_wf,
list_wf,
set_car_wf,
dset_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaEquality_alt,
sqequalHypSubstitution,
imageElimination,
cut,
introduction,
extract_by_obid,
dependent_functionElimination,
thin,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeIsType,
isectElimination,
setElimination,
rename
Latex:
\mlambda{}s,a,bs,z. (bs \mbackslash{} a) \mmember{} s:DSet {}\mrightarrow{} a:|s| {}\mrightarrow{} bs:(|s| List) {}\mrightarrow{} (\mdownarrow{}True) {}\mrightarrow{} (|s| List)
Date html generated:
2019_10_16-PM-01_03_43
Last ObjectModification:
2018_10_08-AM-11_12_25
Theory : list_2
Home
Index