Nuprl Lemma : distinct_nil_lemma

s:Top. (distinct{s}([]) tt)


Proof




Definitions occuring in Statement :  distinct: distinct{s}(ps) nil: [] btrue: tt top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] distinct: distinct{s}(ps) so_lambda: λ2y.t[x; y] member: t ∈ T top: Top so_apply: x[s1;s2] band_mon: <𝔹,∧b> grp_id: e pi2: snd(t) pi1: fst(t)
Lemmas referenced :  mon_htfor_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}s:Top.  (distinct\{s\}([])  \msim{}  tt)



Date html generated: 2016_05_16-AM-07_37_25
Last ObjectModification: 2015_12_28-PM-05_45_17

Theory : list_2


Home Index