Step
*
1
1
1
of Lemma
perm_induction_b
1. n : ℕ
2. Q : Sym(n) ⟶ ℙ
3. Q id_perm()
4. ∀p:Sym(n). ((Q p)
⇒ (∀i:ℕ+n. (Q p O txpose_perm(i;0))))
⊢ Q inv_perm(id_perm())
BY
{ RW PermNormC 0 }
1
1. n : ℕ
2. Q : Sym(n) ⟶ ℙ
3. Q id_perm()
4. ∀p:Sym(n). ((Q p)
⇒ (∀i:ℕ+n. (Q p O txpose_perm(i;0))))
⊢ Q inv_perm(id_perm())
Latex:
Latex:
1. n : \mBbbN{}
2. Q : Sym(n) {}\mrightarrow{} \mBbbP{}
3. Q id\_perm()
4. \mforall{}p:Sym(n). ((Q p) {}\mRightarrow{} (\mforall{}i:\mBbbN{}\msupplus{}n. (Q p O txpose\_perm(i;0))))
\mvdash{} Q inv\_perm(id\_perm())
By
Latex:
RW PermNormC 0
Home
Index