Nuprl Lemma : bsupmset_wf
∀s:DSet. ∀a,b:MSet{s}.  (a ⊇bs b ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bsupmset: a ⊇bs b
, 
mset: MSet{s}
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dset: DSet
Definitions unfolded in proof : 
bsupmset: a ⊇bs b
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
bsubmset_wf, 
mset_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (a  \msupseteq{}\msubb{}s  b  \mmember{}  \mBbbB{})
Date html generated:
2016_05_16-AM-07_50_39
Last ObjectModification:
2015_12_28-PM-06_00_41
Theory : mset
Home
Index