Nuprl Lemma : comb_for_mk_mset_wf
λs,as,z. mk_mset(as) ∈ s:DSet ⟶ as:(|s| List) ⟶ (↓True) ⟶ MSet{s}
Proof
Definitions occuring in Statement : 
mk_mset: mk_mset(as)
, 
mset: MSet{s}
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
Lemmas referenced : 
mk_mset_wf, 
squash_wf, 
true_wf, 
list_wf, 
set_car_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination, 
setElimination, 
rename
Latex:
\mlambda{}s,as,z.  mk\_mset(as)  \mmember{}  s:DSet  {}\mrightarrow{}  as:(|s|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  MSet\{s\}
Date html generated:
2016_05_16-AM-07_46_18
Last ObjectModification:
2015_12_28-PM-06_03_58
Theory : mset
Home
Index