Nuprl Lemma : comb_for_mk_mset_wf

λs,as,z. mk_mset(as) ∈ s:DSet ⟶ as:(|s| List) ⟶ (↓True) ⟶ MSet{s}


Proof




Definitions occuring in Statement :  mk_mset: mk_mset(as) mset: MSet{s} list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: dset: DSet
Lemmas referenced :  mk_mset_wf squash_wf true_wf list_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry isectElimination setElimination rename

Latex:
\mlambda{}s,as,z.  mk\_mset(as)  \mmember{}  s:DSet  {}\mrightarrow{}  as:(|s|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  MSet\{s\}



Date html generated: 2016_05_16-AM-07_46_18
Last ObjectModification: 2015_12_28-PM-06_03_58

Theory : mset


Home Index