Nuprl Lemma : comb_for_mk_mset_wf2
λs,as,z. mk_mset(as) ∈ s:DSet ⟶ as:DisList{s} ⟶ (↓True) ⟶ FiniteSet{s}
Proof
Definitions occuring in Statement : 
finite_set: FiniteSet{s}, 
mk_mset: mk_mset(as), 
dislist: DisList{s}, 
squash: ↓T, 
true: True, 
member: t ∈ T, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
dset: DSet
Definitions unfolded in proof : 
member: t ∈ T, 
squash: ↓T, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ
Lemmas referenced : 
mk_mset_wf2, 
squash_wf, 
true_wf, 
dislist_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination
Latex:
\mlambda{}s,as,z.  mk\_mset(as)  \mmember{}  s:DSet  {}\mrightarrow{}  as:DisList\{s\}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  FiniteSet\{s\}
Date html generated:
2016_05_16-AM-07_51_09
Last ObjectModification:
2015_12_28-PM-06_00_03
Theory : mset
Home
Index