Nuprl Lemma : comb_for_mset_count_wf
λs,x,a,z. (x #∈ a) ∈ s:DSet ⟶ x:|s| ⟶ a:MSet{s} ⟶ (↓True) ⟶ ℕ
Proof
Definitions occuring in Statement : 
mset_count: x #∈ a
, 
mset: MSet{s}
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
Lemmas referenced : 
mset_count_wf, 
squash_wf, 
true_wf, 
mset_wf, 
set_car_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination, 
setElimination, 
rename
Latex:
\mlambda{}s,x,a,z.  (x  \#\mmember{}  a)  \mmember{}  s:DSet  {}\mrightarrow{}  x:|s|  {}\mrightarrow{}  a:MSet\{s\}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}
Date html generated:
2016_05_16-AM-07_46_27
Last ObjectModification:
2015_12_28-PM-06_03_58
Theory : mset
Home
Index