Nuprl Lemma : comb_for_mset_count_wf

λs,x,a,z. (x #∈ a) ∈ s:DSet ⟶ x:|s| ⟶ a:MSet{s} ⟶ (↓True) ⟶ ℕ


Proof




Definitions occuring in Statement :  mset_count: #∈ a mset: MSet{s} nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: dset: DSet
Lemmas referenced :  mset_count_wf squash_wf true_wf mset_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry isectElimination setElimination rename

Latex:
\mlambda{}s,x,a,z.  (x  \#\mmember{}  a)  \mmember{}  s:DSet  {}\mrightarrow{}  x:|s|  {}\mrightarrow{}  a:MSet\{s\}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}



Date html generated: 2016_05_16-AM-07_46_27
Last ObjectModification: 2015_12_28-PM-06_03_58

Theory : mset


Home Index