Nuprl Lemma : comb_for_mk_perm_wf

λT,f,b,z. mk_perm(f;b) ∈ T:Type ⟶ f:(T ⟶ T) ⟶ b:(T ⟶ T) ⟶ (↓True) ⟶ perm_sig(T)


Proof




Definitions occuring in Statement :  mk_perm: mk_perm(f;b) perm_sig: perm_sig(T) squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop:
Lemmas referenced :  mk_perm_wf squash_wf true_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination inhabitedIsType functionIsType universeEquality

Latex:
\mlambda{}T,f,b,z.  mk\_perm(f;b)  \mmember{}  T:Type  {}\mrightarrow{}  f:(T  {}\mrightarrow{}  T)  {}\mrightarrow{}  b:(T  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  perm\_sig(T)



Date html generated: 2019_10_16-PM-00_58_41
Last ObjectModification: 2018_10_08-AM-09_46_36

Theory : perms_1


Home Index