Step
*
1
1
of Lemma
cons_functionality_wrt_permr
1. T : Type
2. a : T
3. b : T
4. as : T List
5. bs : T List
6. a = b ∈ T
7. ||as|| = ||bs|| ∈ ℤ
8. p : Sym(||as||)
9. ∀i:ℕ||as||. (as[p.f i] = bs[i] ∈ T)
10. (||as|| + 1) = (||bs|| + 1) ∈ ℤ
⊢ ∃p:Sym(||as|| + 1). ∀i:ℕ||as|| + 1. ([a / as][p.f i] = [b / bs][i] ∈ T)
BY
{ (% extend_perm extends the hi end, we need the lo end
extended here%
With conj{↔p{||as|| + 1}}(↑{||as||}(conj{↔p{||as||}}(p))) (D 0)
THENA Auto
) }
1
1. T : Type
2. a : T
3. b : T
4. as : T List
5. bs : T List
6. a = b ∈ T
7. ||as|| = ||bs|| ∈ ℤ
8. p : Sym(||as||)
9. ∀i:ℕ||as||. (as[p.f i] = bs[i] ∈ T)
10. (||as|| + 1) = (||bs|| + 1) ∈ ℤ
⊢ ∀i:ℕ||as|| + 1. ([a / as][conj{↔p{||as|| + 1}}(↑{||as||}(conj{↔p{||as||}}(p))).f i] = [b / bs][i] ∈ T)
Latex:
Latex:
1. T : Type
2. a : T
3. b : T
4. as : T List
5. bs : T List
6. a = b
7. ||as|| = ||bs||
8. p : Sym(||as||)
9. \mforall{}i:\mBbbN{}||as||. (as[p.f i] = bs[i])
10. (||as|| + 1) = (||bs|| + 1)
\mvdash{} \mexists{}p:Sym(||as|| + 1). \mforall{}i:\mBbbN{}||as|| + 1. ([a / as][p.f i] = [b / bs][i])
By
Latex:
(\% extend\_perm extends the hi end, we need the lo end
extended here\%
With conj\{\mrightleftharpoons{}p\{||as|| + 1\}\}(\muparrow{}\{||as||\}(conj\{\mrightleftharpoons{}p\{||as||\}\}(p))) (D 0)
THENA Auto
)
Home
Index