Nuprl Lemma : fabgrp_grp_wf

s:DSet. ∀f:fabgrp_sig{i:l}(s).  (f.grp ∈ AbGrp)


Proof




Definitions occuring in Statement :  fabgrp_grp: f.grp fabgrp_sig: fabgrp_sig{i:l}(s) all: x:A. B[x] member: t ∈ T abgrp: AbGrp dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T fabgrp_sig: fabgrp_sig{i:l}(s) fabgrp_grp: f.grp pi1: fst(t)
Lemmas referenced :  fabgrp_sig_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}f:fabgrp\_sig\{i:l\}(s).    (f.grp  \mmember{}  AbGrp)



Date html generated: 2016_05_16-AM-08_13_24
Last ObjectModification: 2015_12_28-PM-06_09_50

Theory : polynom_1


Home Index