Nuprl Lemma : fabgrp_sig_wf

s:DSet. (fabgrp_sig{i:l}(s) ∈ 𝕌')


Proof




Definitions occuring in Statement :  fabgrp_sig: fabgrp_sig{i:l}(s) all: x:A. B[x] member: t ∈ T universe: Type dset: DSet
Definitions unfolded in proof :  fabgrp_sig: fabgrp_sig{i:l}(s) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon
Lemmas referenced :  abgrp_wf set_car_wf grp_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut productEquality lemma_by_obid hypothesis functionEquality sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality applyEquality lambdaEquality cumulativity universeEquality because_Cache

Latex:
\mforall{}s:DSet.  (fabgrp\_sig\{i:l\}(s)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-08_13_22
Last ObjectModification: 2015_12_28-PM-06_09_57

Theory : polynom_1


Home Index