Nuprl Lemma : fabgrp_inj_wf
∀s:DSet. ∀f:fabgrp_sig{i:l}(s). (f.inj ∈ |s| ⟶ |f.grp|)
Proof
Definitions occuring in Statement :
fabgrp_inj: f.inj
,
fabgrp_grp: f.grp
,
fabgrp_sig: fabgrp_sig{i:l}(s)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
grp_car: |g|
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
fabgrp_sig: fabgrp_sig{i:l}(s)
,
fabgrp_inj: f.inj
,
fabgrp_grp: f.grp
,
pi1: fst(t)
,
pi2: snd(t)
Lemmas referenced :
fabgrp_sig_wf,
dset_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
sqequalHypSubstitution,
productElimination,
thin,
sqequalRule,
hypothesisEquality,
hypothesis,
lemma_by_obid,
dependent_functionElimination
Latex:
\mforall{}s:DSet. \mforall{}f:fabgrp\_sig\{i:l\}(s). (f.inj \mmember{} |s| {}\mrightarrow{} |f.grp|)
Date html generated:
2016_05_16-AM-08_13_27
Last ObjectModification:
2015_12_28-PM-06_09_49
Theory : polynom_1
Home
Index