Nuprl Lemma : fabgrp_inj_wf
∀s:DSet. ∀f:fabgrp_sig{i:l}(s).  (f.inj ∈ |s| ⟶ |f.grp|)
Proof
Definitions occuring in Statement : 
fabgrp_inj: f.inj
, 
fabgrp_grp: f.grp
, 
fabgrp_sig: fabgrp_sig{i:l}(s)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
fabgrp_sig: fabgrp_sig{i:l}(s)
, 
fabgrp_inj: f.inj
, 
fabgrp_grp: f.grp
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
fabgrp_sig_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination
Latex:
\mforall{}s:DSet.  \mforall{}f:fabgrp\_sig\{i:l\}(s).    (f.inj  \mmember{}  |s|  {}\mrightarrow{}  |f.grp|)
Date html generated:
2016_05_16-AM-08_13_27
Last ObjectModification:
2015_12_28-PM-06_09_49
Theory : polynom_1
Home
Index