Nuprl Lemma : fabgrp_inj_wf

s:DSet. ∀f:fabgrp_sig{i:l}(s).  (f.inj ∈ |s| ⟶ |f.grp|)


Proof




Definitions occuring in Statement :  fabgrp_inj: f.inj fabgrp_grp: f.grp fabgrp_sig: fabgrp_sig{i:l}(s) all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T fabgrp_sig: fabgrp_sig{i:l}(s) fabgrp_inj: f.inj fabgrp_grp: f.grp pi1: fst(t) pi2: snd(t)
Lemmas referenced :  fabgrp_sig_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}f:fabgrp\_sig\{i:l\}(s).    (f.inj  \mmember{}  |s|  {}\mrightarrow{}  |f.grp|)



Date html generated: 2016_05_16-AM-08_13_27
Last ObjectModification: 2015_12_28-PM-06_09_49

Theory : polynom_1


Home Index