Nuprl Lemma : fabgrp_umap_wf

s:DSet. ∀f:fabgrp_sig{i:l}(s).  (f.umap ∈ grp':AbGrp ⟶ (|s| ⟶ |grp'|) ⟶ |f.grp| ⟶ |grp'|)


Proof




Definitions occuring in Statement :  fabgrp_umap: f.umap fabgrp_grp: f.grp fabgrp_sig: fabgrp_sig{i:l}(s) all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] abgrp: AbGrp grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T fabgrp_sig: fabgrp_sig{i:l}(s) fabgrp_umap: f.umap fabgrp_grp: f.grp pi1: fst(t) pi2: snd(t)
Lemmas referenced :  fabgrp_sig_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}f:fabgrp\_sig\{i:l\}(s).    (f.umap  \mmember{}  grp':AbGrp  {}\mrightarrow{}  (|s|  {}\mrightarrow{}  |grp'|)  {}\mrightarrow{}  |f.grp|  {}\mrightarrow{}  |grp'|)



Date html generated: 2016_05_16-AM-08_13_30
Last ObjectModification: 2015_12_28-PM-06_09_43

Theory : polynom_1


Home Index