Nuprl Lemma : fma_alg_wf

G:GrpSig. ∀A:RngSig. ∀f:fma_sig{i:l}(G;A).  (f.alg ∈ algebra_sig{i:l}(|A|))


Proof




Definitions occuring in Statement :  fma_alg: f.alg fma_sig: fma_sig{i:l}(G;A) algebra_sig: algebra_sig{i:l}(A) all: x:A. B[x] member: t ∈ T rng_car: |r| rng_sig: RngSig grp_sig: GrpSig
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T fma_sig: fma_sig{i:l}(G;A) fma_alg: f.alg pi1: fst(t)
Lemmas referenced :  fma_sig_wf rng_sig_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}G:GrpSig.  \mforall{}A:RngSig.  \mforall{}f:fma\_sig\{i:l\}(G;A).    (f.alg  \mmember{}  algebra\_sig\{i:l\}(|A|))



Date html generated: 2016_05_16-AM-08_14_14
Last ObjectModification: 2015_12_28-PM-06_09_17

Theory : polynom_1


Home Index