Nuprl Lemma : fma_sig_wf

G:GrpSig. ∀A:RngSig.  (fma_sig{i:l}(G;A) ∈ 𝕌')


Proof




Definitions occuring in Statement :  fma_sig: fma_sig{i:l}(G;A) all: x:A. B[x] member: t ∈ T universe: Type rng_sig: RngSig grp_sig: GrpSig
Definitions unfolded in proof :  fma_sig: fma_sig{i:l}(G;A) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] algebra: algebra{i:l}(A) module: A-Module
Lemmas referenced :  algebra_sig_wf rng_car_wf grp_car_wf alg_car_wf algebra_wf rng_sig_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut productEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis cumulativity functionEquality setElimination rename

Latex:
\mforall{}G:GrpSig.  \mforall{}A:RngSig.    (fma\_sig\{i:l\}(G;A)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-08_14_11
Last ObjectModification: 2015_12_28-PM-06_09_18

Theory : polynom_1


Home Index