Nuprl Lemma : mcopower_mon_wf

s:DSet. ∀g:AbMon. ∀m:mcopower_sig{i:l}(s;g).  (m.mon ∈ AbMon)


Proof




Definitions occuring in Statement :  mcopower_mon: m.mon mcopower_sig: mcopower_sig{i:l}(s;g) all: x:A. B[x] member: t ∈ T abmonoid: AbMon dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T mcopower_sig: mcopower_sig{i:l}(s;g) mcopower_mon: m.mon pi1: fst(t)
Lemmas referenced :  mcopower_sig_wf abmonoid_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.  \mforall{}m:mcopower\_sig\{i:l\}(s;g).    (m.mon  \mmember{}  AbMon)



Date html generated: 2016_05_16-AM-08_12_53
Last ObjectModification: 2015_12_28-PM-06_09_42

Theory : polynom_1


Home Index