Nuprl Lemma : mcopower_sig_wf

s:DSet. ∀g:AbMon.  (mcopower_sig{i:l}(s;g) ∈ 𝕌')


Proof




Definitions occuring in Statement :  mcopower_sig: mcopower_sig{i:l}(s;g) all: x:A. B[x] member: t ∈ T universe: Type abmonoid: AbMon dset: DSet
Definitions unfolded in proof :  mcopower_sig: mcopower_sig{i:l}(s;g) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B abmonoid: AbMon mon: Mon
Lemmas referenced :  abmonoid_wf set_car_wf grp_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut productEquality lemma_by_obid hypothesis functionEquality sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality applyEquality lambdaEquality cumulativity universeEquality because_Cache

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.    (mcopower\_sig\{i:l\}(s;g)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-08_12_50
Last ObjectModification: 2015_12_28-PM-06_09_45

Theory : polynom_1


Home Index