Nuprl Lemma : mcopower_sig_wf
∀s:DSet. ∀g:AbMon.  (mcopower_sig{i:l}(s;g) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
mcopower_sig: mcopower_sig{i:l}(s;g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
abmonoid: AbMon
, 
dset: DSet
Definitions unfolded in proof : 
mcopower_sig: mcopower_sig{i:l}(s;g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
subtype_rel: A ⊆r B
, 
abmonoid: AbMon
, 
mon: Mon
Lemmas referenced : 
abmonoid_wf, 
set_car_wf, 
grp_car_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
productEquality, 
lemma_by_obid, 
hypothesis, 
functionEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
because_Cache
Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.    (mcopower\_sig\{i:l\}(s;g)  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_16-AM-08_12_50
Last ObjectModification:
2015_12_28-PM-06_09_45
Theory : polynom_1
Home
Index