Nuprl Lemma : mcopower_umap_wf

s:DSet. ∀g:AbMon. ∀m:mcopower_sig{i:l}(s;g).  (m.umap ∈ h:AbMon ⟶ (|s| ⟶ |g| ⟶ |h|) ⟶ |m.mon| ⟶ |h|)


Proof




Definitions occuring in Statement :  mcopower_umap: m.umap mcopower_mon: m.mon mcopower_sig: mcopower_sig{i:l}(s;g) all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T mcopower_sig: mcopower_sig{i:l}(s;g) mcopower_umap: m.umap mcopower_mon: m.mon pi1: fst(t) pi2: snd(t)
Lemmas referenced :  mcopower_sig_wf abmonoid_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.  \mforall{}m:mcopower\_sig\{i:l\}(s;g).
    (m.umap  \mmember{}  h:AbMon  {}\mrightarrow{}  (|s|  {}\mrightarrow{}  |g|  {}\mrightarrow{}  |h|)  {}\mrightarrow{}  |m.mon|  {}\mrightarrow{}  |h|)



Date html generated: 2016_05_16-AM-08_12_58
Last ObjectModification: 2015_12_28-PM-06_09_47

Theory : polynom_1


Home Index