Nuprl Lemma : respects-equality-oalist2
∀[s:LOSet]. ∀[g:AbDMon].  respects-equality((|s| × |g|) List;|oal(s;g)|)
Proof
Definitions occuring in Statement : 
oalist: oal(a;b)
, 
list: T List
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
abdmonoid: AbDMon
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set_car: |p|
, 
pi1: fst(t)
, 
set_prod: s × t
, 
mk_dset: mk_dset(T, eq)
, 
grp_car: |g|
, 
dset_of_mon: g↓set
Lemmas referenced : 
respects-equality-oalist1, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
universeIsType
Latex:
\mforall{}[s:LOSet].  \mforall{}[g:AbDMon].    respects-equality((|s|  \mtimes{}  |g|)  List;|oal(s;g)|)
Date html generated:
2019_10_16-PM-01_07_04
Last ObjectModification:
2018_11_27-AM-11_23_17
Theory : polynom_2
Home
Index