Nuprl Lemma : respects-equality-oalist2

[s:LOSet]. ∀[g:AbDMon].  respects-equality((|s| × |g|) List;|oal(s;g)|)


Proof




Definitions occuring in Statement :  oalist: oal(a;b) list: List respects-equality: respects-equality(S;T) uall: [x:A]. B[x] product: x:A × B[x] abdmonoid: AbDMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T set_car: |p| pi1: fst(t) set_prod: s × t mk_dset: mk_dset(T, eq) grp_car: |g| dset_of_mon: g↓set
Lemmas referenced :  respects-equality-oalist1 abdmonoid_wf loset_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule universeIsType

Latex:
\mforall{}[s:LOSet].  \mforall{}[g:AbDMon].    respects-equality((|s|  \mtimes{}  |g|)  List;|oal(s;g)|)



Date html generated: 2019_10_16-PM-01_07_04
Last ObjectModification: 2018_11_27-AM-11_23_17

Theory : polynom_2


Home Index