Nuprl Lemma : respects-equality-oalist1
∀[s:LOSet]. ∀[g:AbDMon].  respects-equality(|(s × (g↓set))| List;|oal(s;g)|)
Proof
Definitions occuring in Statement : 
oalist: oal(a;b)
, 
list: T List
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
dset_of_mon: g↓set
, 
abdmonoid: AbDMon
, 
set_prod: s × t
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
abdmonoid: AbDMon
, 
subtype_rel: A ⊆r B
, 
dset: DSet
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
oalist: oal(a;b)
, 
set_car: |p|
, 
dset_of_mon: g↓set
, 
set_prod: s × t
, 
pi1: fst(t)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
dset_list: s List
, 
set_eq: =b
, 
pi2: snd(t)
, 
dmon: DMon
, 
poset_sig: PosetSig
, 
mon: Mon
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
grp_car: |g|
, 
grp_eq: =b
, 
so_apply: x[s]
Lemmas referenced : 
sq_stable__respects-equality, 
list_wf, 
set_car_wf, 
set_prod_wf, 
dset_of_mon_wf, 
oalist_wf, 
abdmonoid_wf, 
loset_wf, 
abdmonoid_properties, 
dmon_properties, 
respects-equality-set-trivial, 
loset_properties, 
poset_properties, 
grp_car_wf, 
assert_wf, 
sd_ordered_wf, 
map_wf, 
not_wf, 
mem_wf, 
bool_wf, 
eqfun_p_wf, 
set_eq_wf, 
grp_id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
productEquality, 
spreadEquality, 
because_Cache, 
productElimination, 
productIsType, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
functionIsType
Latex:
\mforall{}[s:LOSet].  \mforall{}[g:AbDMon].    respects-equality(|(s  \mtimes{}  (g\mdownarrow{}set))|  List;|oal(s;g)|)
Date html generated:
2019_10_16-PM-01_07_02
Last ObjectModification:
2018_11_27-AM-11_21_56
Theory : polynom_2
Home
Index