Nuprl Lemma : respects-equality-oalist1

[s:LOSet]. ∀[g:AbDMon].  respects-equality(|(s × (g↓set))| List;|oal(s;g)|)


Proof




Definitions occuring in Statement :  oalist: oal(a;b) list: List respects-equality: respects-equality(S;T) uall: [x:A]. B[x] dset_of_mon: g↓set abdmonoid: AbDMon set_prod: s × t loset: LOSet set_car: |p|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T loset: LOSet poset: POSet{i} qoset: QOSet abdmonoid: AbDMon subtype_rel: A ⊆B dset: DSet all: x:A. B[x] sq_stable: SqStable(P) implies:  Q squash: T oalist: oal(a;b) set_car: |p| dset_of_mon: g↓set set_prod: s × t pi1: fst(t) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_eq: =b pi2: snd(t) dmon: DMon poset_sig: PosetSig mon: Mon so_lambda: λ2x.t[x] prop: and: P ∧ Q grp_car: |g| grp_eq: =b so_apply: x[s]
Lemmas referenced :  sq_stable__respects-equality list_wf set_car_wf set_prod_wf dset_of_mon_wf oalist_wf abdmonoid_wf loset_wf abdmonoid_properties dmon_properties respects-equality-set-trivial loset_properties poset_properties grp_car_wf assert_wf sd_ordered_wf map_wf not_wf mem_wf bool_wf eqfun_p_wf set_eq_wf grp_id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination universeIsType productEquality spreadEquality because_Cache productElimination productIsType dependent_set_memberEquality_alt dependent_pairEquality_alt functionIsType

Latex:
\mforall{}[s:LOSet].  \mforall{}[g:AbDMon].    respects-equality(|(s  \mtimes{}  (g\mdownarrow{}set))|  List;|oal(s;g)|)



Date html generated: 2019_10_16-PM-01_07_02
Last ObjectModification: 2018_11_27-AM-11_21_56

Theory : polynom_2


Home Index