Nuprl Lemma : comb_for_omral_action_wf

λg,r,v,ps,z. (v ⋅⋅ ps) ∈ g:OCMon ⟶ r:CDRng ⟶ v:|r| ⟶ ps:|omral(g;r)| ⟶ (↓True) ⟶ |omral(g;r)|


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omralist: omral(g;r) squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] cdrng: CDRng rng_car: |r| ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng
Lemmas referenced :  omral_action_wf squash_wf true_wf set_car_wf omralist_wf dset_wf rng_car_wf cdrng_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry isectElimination applyEquality setElimination rename sqequalRule

Latex:
\mlambda{}g,r,v,ps,z.  (v  \mcdot{}\mcdot{}  ps)  \mmember{}  g:OCMon  {}\mrightarrow{}  r:CDRng  {}\mrightarrow{}  v:|r|  {}\mrightarrow{}  ps:|omral(g;r)|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |omral(g;r)|



Date html generated: 2016_05_16-AM-08_26_39
Last ObjectModification: 2015_12_28-PM-06_38_07

Theory : polynom_3


Home Index