Nuprl Lemma : comb_for_omral_action_wf
λg,r,v,ps,z. (v ⋅⋅ ps) ∈ g:OCMon ⟶ r:CDRng ⟶ v:|r| ⟶ ps:|omral(g;r)| ⟶ (↓True) ⟶ |omral(g;r)|
Proof
Definitions occuring in Statement : 
omral_action: v ⋅⋅ ps
, 
omralist: omral(g;r)
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
cdrng: CDRng
, 
rng_car: |r|
, 
ocmon: OCMon
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
dset: DSet
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
Lemmas referenced : 
omral_action_wf, 
squash_wf, 
true_wf, 
set_car_wf, 
omralist_wf, 
dset_wf, 
rng_car_wf, 
cdrng_wf, 
ocmon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination, 
applyEquality, 
setElimination, 
rename, 
sqequalRule
Latex:
\mlambda{}g,r,v,ps,z.  (v  \mcdot{}\mcdot{}  ps)  \mmember{}  g:OCMon  {}\mrightarrow{}  r:CDRng  {}\mrightarrow{}  v:|r|  {}\mrightarrow{}  ps:|omral(g;r)|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |omral(g;r)|
Date html generated:
2016_05_16-AM-08_26_39
Last ObjectModification:
2015_12_28-PM-06_38_07
Theory : polynom_3
Home
Index