Nuprl Lemma : comb_for_omral_action_wf
λg,r,v,ps,z. (v ⋅⋅ ps) ∈ g:OCMon ⟶ r:CDRng ⟶ v:|r| ⟶ ps:|omral(g;r)| ⟶ (↓True) ⟶ |omral(g;r)|
Proof
Definitions occuring in Statement :
omral_action: v ⋅⋅ ps
,
omralist: omral(g;r)
,
squash: ↓T
,
true: True
,
member: t ∈ T
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
cdrng: CDRng
,
rng_car: |r|
,
ocmon: OCMon
,
set_car: |p|
Definitions unfolded in proof :
member: t ∈ T
,
squash: ↓T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
dset: DSet
,
cdrng: CDRng
,
crng: CRng
,
rng: Rng
Lemmas referenced :
omral_action_wf,
squash_wf,
true_wf,
set_car_wf,
omralist_wf,
dset_wf,
rng_car_wf,
cdrng_wf,
ocmon_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
cut,
lemma_by_obid,
dependent_functionElimination,
thin,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
isectElimination,
applyEquality,
setElimination,
rename,
sqequalRule
Latex:
\mlambda{}g,r,v,ps,z. (v \mcdot{}\mcdot{} ps) \mmember{} g:OCMon {}\mrightarrow{} r:CDRng {}\mrightarrow{} v:|r| {}\mrightarrow{} ps:|omral(g;r)| {}\mrightarrow{} (\mdownarrow{}True) {}\mrightarrow{} |omral(g;r)|
Date html generated:
2016_05_16-AM-08_26_39
Last ObjectModification:
2015_12_28-PM-06_38_07
Theory : polynom_3
Home
Index