Nuprl Lemma : omral_action_wf

g:OCMon. ∀r:CDRng. ∀v:|r|. ∀ps:|omral(g;r)|.  (v ⋅⋅ ps ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omralist: omral(g;r) all: x:A. B[x] member: t ∈ T cdrng: CDRng rng_car: |r| ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  omral_action: v ⋅⋅ ps all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng
Lemmas referenced :  omral_scale_wf2 grp_id_wf set_car_wf omralist_wf dset_wf rng_car_wf cdrng_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename hypothesis applyEquality lambdaEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.    (v  \mcdot{}\mcdot{}  ps  \mmember{}  |omral(g;r)|)



Date html generated: 2016_05_16-AM-08_26_38
Last ObjectModification: 2015_12_28-PM-06_38_05

Theory : polynom_3


Home Index