Step
*
2
1
2
1
of Lemma
es-local-pred-iff-es-p-local-pred
1. Info : Type
2. T : Type
3. X : EClass(T)@i'
4. es : EO+(Info)@i'
5. e : E@i
6. ¬↑first(e)
7. ∀e1:E
((e1 < e)
⇒ (∀e':E
((es-p-local-pred(es;λe'.inhabited-classrel(es;T;X;e')) e1 e')
⇒ ((last(λe'.0 <z #(X es e')) e1) = (inl e') ∈ (E + Top)))))
8. e' : E@i
9. es-p-local-pred(es;λe'.inhabited-classrel(es;T;X;e')) e e'@i
10. 0 < #(X es pred(e))
⊢ (inl pred(e)) = (inl e') ∈ (E + Top)
BY
{ (Auto
THEN RepUR ``es-p-local-pred`` (-2)
THEN ExRepD
THEN (InstLemma `es-pred_property` [⌈es⌉; ⌈e⌉]⋅ THENA Auto)
THEN ExRepD
THEN (InstHyp [⌈e'⌉] (-1)⋅ THENA Auto)
THEN D (-1)
THEN Try (Complete (Auto))
THEN (InstHyp [⌈pred(e)⌉] (-6)⋅ THENA Auto)
THEN D (-1)
THEN (FLemma `bag-size-bag-member` [-5] THENA Auto)
THEN RepUR ``inhabited-classrel classrel`` 0
THEN Auto) }
Latex:
Latex:
1. Info : Type
2. T : Type
3. X : EClass(T)@i'
4. es : EO+(Info)@i'
5. e : E@i
6. \mneg{}\muparrow{}first(e)
7. \mforall{}e1:E
((e1 < e)
{}\mRightarrow{} (\mforall{}e':E
((es-p-local-pred(es;\mlambda{}e'.inhabited-classrel(es;T;X;e')) e1 e')
{}\mRightarrow{} ((last(\mlambda{}e'.0 <z \#(X es e')) e1) = (inl e')))))
8. e' : E@i
9. es-p-local-pred(es;\mlambda{}e'.inhabited-classrel(es;T;X;e')) e e'@i
10. 0 < \#(X es pred(e))
\mvdash{} (inl pred(e)) = (inl e')
By
Latex:
(Auto
THEN RepUR ``es-p-local-pred`` (-2)
THEN ExRepD
THEN (InstLemma `es-pred\_property` [\mkleeneopen{}es\mkleeneclose{}; \mkleeneopen{}e\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ExRepD
THEN (InstHyp [\mkleeneopen{}e'\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN D (-1)
THEN Try (Complete (Auto))
THEN (InstHyp [\mkleeneopen{}pred(e)\mkleeneclose{}] (-6)\mcdot{} THENA Auto)
THEN D (-1)
THEN (FLemma `bag-size-bag-member` [-5] THENA Auto)
THEN RepUR ``inhabited-classrel classrel`` 0
THEN Auto)
Home
Index