Nuprl Lemma : simple-comb-2-classrel-weak

[Info,A,B,C:Type]. ∀[f:A ─→ B ─→ C]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  (v ∈ lifting-2(f)|X, Y|(e) ⇐⇒ ↓∃a:A. ∃b:B. ((v (f b) ∈ C) ∧ b ∈ Y(e) ∧ a ∈ X(e)))


Proof




Definitions occuring in Statement :  simple-comb-2: F|X, Y| classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T lifting-2: lifting-2(f)
Lemmas :  simple-comb-2-classrel classrel_wf simple-comb-2_wf lifting-2_wf squash_wf exists_wf es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf

Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
\mforall{}[v:C].
    (v  \mmember{}  lifting-2(f)|X,  Y|(e)  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}a:A.  \mexists{}b:B.  ((v  =  (f  a  b))  \mwedge{}  b  \mmember{}  Y(e)  \mwedge{}  a  \mmember{}  X(e)))



Date html generated: 2015_07_22-PM-00_11_04
Last ObjectModification: 2015_01_28-AM-11_40_40

Home Index