Nuprl Lemma : simple-comb-2-classrel

[Info,A,B,C:Type]. ∀[f:A ─→ B ─→ C]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ lifting-2(f)|X, Y|(e);↓∃a:A. ∃b:B. ((v (f b) ∈ C) ∧ b ∈ Y(e) ∧ a ∈ X(e)))


Proof




Definitions occuring in Statement :  simple-comb-2: F|X, Y| classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T lifting-2: lifting-2(f)
Lemmas :  decidable__equal_int subtype_base_sq int_subtype_base select_wf cons_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype nil_wf length_wf int_seg_wf simple-comb_wf false_wf le_wf sq_stable__le length_nil non_neg_length length_wf_nil length_cons length_wf_nat lifting2_wf lelt_wf bag_wf classrel_wf simple-comb-2_wf lifting-2_wf squash_wf exists_wf event-ordering+_wf eclass_wf simple-comb2-classrel

Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
\mforall{}[v:C].
    uiff(v  \mmember{}  lifting-2(f)|X,  Y|(e);\mdownarrow{}\mexists{}a:A.  \mexists{}b:B.  ((v  =  (f  a  b))  \mwedge{}  b  \mmember{}  Y(e)  \mwedge{}  a  \mmember{}  X(e)))



Date html generated: 2015_07_22-PM-00_11_03
Last ObjectModification: 2015_01_28-AM-11_41_13

Home Index