Nuprl Lemma : pi_term_ind_wf
∀[A:Type]. ∀[R:A ─→ pi_term() ─→ ℙ]. ∀[v:pi_term()]. ∀[zero:{x:A| R[x;pizero()]} ]. ∀[comm:pre:pi_prefix()
                                                                                          ─→ body:pi_term()
                                                                                          ─→ {x:A| R[x;body]} 
                                                                                          ─→ {x:A| 
                                                                                              R[x;picomm(pre;body)]} ].
∀[option:left:pi_term()
         ─→ right:pi_term()
         ─→ {x:A| R[x;left]} 
         ─→ {x:A| R[x;right]} 
         ─→ {x:A| R[x;pioption(left;right)]} ]. ∀[par:left:pi_term()
                                                     ─→ right:pi_term()
                                                     ─→ {x:A| R[x;left]} 
                                                     ─→ {x:A| R[x;right]} 
                                                     ─→ {x:A| R[x;pipar(left;right)]} ]. ∀[rep:body:pi_term()
                                                                                              ─→ {x:A| R[x;body]} 
                                                                                              ─→ {x:A| 
                                                                                                  R[x;pirep(body)]} ].
∀[new:name:Name ─→ body:pi_term() ─→ {x:A| R[x;body]}  ─→ {x:A| R[x;pinew(name;body)]} ].
  (... ∈ {x:A| R[x;v]} )
Proof
Definitions occuring in Statement : 
pi_term_ind: pi_term_ind(v;zero;pre,body,rec1....;left,right,rec2,rec3....;left,right,rec4,rec5....;body,rec6....;name,body,rec7....)
, 
pinew: pinew(name;body)
, 
pirep: pirep(body)
, 
pipar: pipar(left;right)
, 
pioption: pioption(left;right)
, 
picomm: picomm(pre;body)
, 
pizero: pizero()
, 
pi_term: pi_term()
, 
pi_prefix: pi_prefix()
, 
name: Name
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3;s4]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ─→ B[x]
, 
universe: Type
Definitions : 
pi_term-definition, 
pi_term-induction, 
uniform-comp-nat-induction, 
pi_term-ext
Lemmas : 
top_wf, 
has-value_wf_base, 
lifting-strict-atom_eq, 
base_wf, 
pizero_wf, 
pi_prefix_wf, 
pi_term_wf, 
picomm_wf, 
pioption_wf, 
pipar_wf, 
pirep_wf, 
name_wf, 
pinew_wf, 
all_wf, 
set_wf, 
subtype_rel-equal
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  pi\_term()  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:pi\_term()].  \mforall{}[zero:\{x:A|  R[x;pizero()]\}  ].
\mforall{}[comm:pre:pi\_prefix()  {}\mrightarrow{}  body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;picomm(pre;body)]\}  ].
\mforall{}[option:left:pi\_term()
                  {}\mrightarrow{}  right:pi\_term()
                  {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                  {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                  {}\mrightarrow{}  \{x:A|  R[x;pioption(left;right)]\}  ].  \mforall{}[par:left:pi\_term()
                                                                                                          {}\mrightarrow{}  right:pi\_term()
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;pipar(left;right)]\}  ].
\mforall{}[rep:body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;pirep(body)]\}  ].
\mforall{}[new:name:Name  {}\mrightarrow{}  body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;pinew(name;body)]\}  ].
    (...  \mmember{}  \{x:A|  R[x;v]\}  )
Date html generated:
2015_07_23-AM-11_32_48
Last ObjectModification:
2015_01_29-AM-00_56_21
Home
Index