Nuprl Lemma : pi_term_ind_wf

[A:Type]. ∀[R:A ─→ pi_term() ─→ ℙ]. ∀[v:pi_term()]. ∀[zero:{x:A| R[x;pizero()]} ]. ∀[comm:pre:pi_prefix()
                                                                                          ─→ body:pi_term()
                                                                                          ─→ {x:A| R[x;body]} 
                                                                                          ─→ {x:A| 
                                                                                              R[x;picomm(pre;body)]} ].
[option:left:pi_term()
         ─→ right:pi_term()
         ─→ {x:A| R[x;left]} 
         ─→ {x:A| R[x;right]} 
         ─→ {x:A| R[x;pioption(left;right)]} ]. ∀[par:left:pi_term()
                                                     ─→ right:pi_term()
                                                     ─→ {x:A| R[x;left]} 
                                                     ─→ {x:A| R[x;right]} 
                                                     ─→ {x:A| R[x;pipar(left;right)]} ]. ∀[rep:body:pi_term()
                                                                                              ─→ {x:A| R[x;body]} 
                                                                                              ─→ {x:A| 
                                                                                                  R[x;pirep(body)]} ].
[new:name:Name ─→ body:pi_term() ─→ {x:A| R[x;body]}  ─→ {x:A| R[x;pinew(name;body)]} ].
  (... ∈ {x:A| R[x;v]} )


Proof




Definitions occuring in Statement :  pi_term_ind: pi_term_ind(v;zero;pre,body,rec1....;left,right,rec2,rec3....;left,right,rec4,rec5....;body,rec6....;name,body,rec7....) pinew: pinew(name;body) pirep: pirep(body) pipar: pipar(left;right) pioption: pioption(left;right) picomm: picomm(pre;body) pizero: pizero() pi_term: pi_term() pi_prefix: pi_prefix() name: Name uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] universe: Type
Definitions :  pi_term-definition pi_term-induction uniform-comp-nat-induction pi_term-ext
Lemmas :  top_wf has-value_wf_base lifting-strict-atom_eq base_wf pizero_wf pi_prefix_wf pi_term_wf picomm_wf pioption_wf pipar_wf pirep_wf name_wf pinew_wf all_wf set_wf subtype_rel-equal

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  pi\_term()  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:pi\_term()].  \mforall{}[zero:\{x:A|  R[x;pizero()]\}  ].
\mforall{}[comm:pre:pi\_prefix()  {}\mrightarrow{}  body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;picomm(pre;body)]\}  ].
\mforall{}[option:left:pi\_term()
                  {}\mrightarrow{}  right:pi\_term()
                  {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                  {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                  {}\mrightarrow{}  \{x:A|  R[x;pioption(left;right)]\}  ].  \mforall{}[par:left:pi\_term()
                                                                                                          {}\mrightarrow{}  right:pi\_term()
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;pipar(left;right)]\}  ].
\mforall{}[rep:body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;pirep(body)]\}  ].
\mforall{}[new:name:Name  {}\mrightarrow{}  body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;pinew(name;body)]\}  ].
    (...  \mmember{}  \{x:A|  R[x;v]\}  )



Date html generated: 2015_07_23-AM-11_32_48
Last ObjectModification: 2015_01_29-AM-00_56_21

Home Index